请问谁被公认为抽象代数奠基人之一被誉为代数

日期:2019-07-04编辑作者:足球

  有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是Emmy Noether, 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。Noether的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。1907-1919年,她主要研究代数不变式及微分不变式。她在博士论文中给出三元四次型的不变式的完全组。还解决了有理函数域的有限有理基的存在问题。对有限群的不变式具有有限基给出一个构造性证明。她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(Lie群)下不变式问题,给出Noether定理,把对称性、不变性和物理的守恒律联系在一起。1920~1927年间她主要研究交换代数与交换算术。1916年后,她开始由古典代数学向抽象代数学过渡。1920年,她已引入“左模”、“右模”的概念。1921年写出的整环的理想理论是交换代数发展的里程碑。建立了交换Noether环理论,证明了准素分解定理。1926年发表代数数域及代数函数域的理想理论的抽象构造,给Dedekind环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。Noether的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。Noether当之无愧地被人们誉为抽象代数的奠基人之一。1927-1935年,Noether研究非交换代数与非交换算术。她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用决定有限维Galois扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。她对数学和理论物理作出非常重要的贡献。数学上,她研究不变量理论和非交换代数;物理上,她导出了非常关键而且美丽的结果,称为诺特定理。因此,凡不变量的命题是对应物理系统的广义化转换(物理学家称之为对称性)都翻译成守恒定律。现代物理相当多地建基于对称性的种种性质,诺特定理的结果就构成了现代物理基础的一部份。

  1921年,诺特引进了交换环的理想的升链条件,证明了这些环存在基本分解(称为拉斯克-诺特定理)。环的理想若满足升链条件,就称为诺特环。

本文由请问谁被公认为抽象代数奠基人之一被誉为代数发布,转载请注明来源:请问谁被公认为抽象代数奠基人之一被誉为代数

交换代数的完备化

可选中1个或多个下面的关键词,搜索相关资料。也可直接点搜索资料搜索整个问题。 设U是环R的理想,取{Unn0}为R中零...

详细>>